SL Paper 1

Let $f(x)=(x-5)^3$, for $x\in\mathbb{R}.$

- a. Find $f^{-1}(x)$.
- b. Let g be a function so that $(f\circ g)(x)=8x^6.$ Find g(x).

Let $f(x) = \log_p(x+3)$ for x > -3. Part of the graph of f is shown below.

The graph passes through A(6, 2) , has an x-intercept at (-2, 0) and has an asymptote at x = -3 .

- a. Find p.
- b. The graph of f is reflected in the line y = x to give the graph of g.
 - (i) Write down the *y*-intercept of the graph of g.
 - (ii) Sketch the graph of g, noting clearly any asymptotes and the image of A.
- c. The graph of f is reflected in the line y = x to give the graph of g.

Find g(x).

[3]

[4] [5]

[4]

Let $f(x) = 6 + 6 \sin x$. Part of the graph of f is shown below.

The shaded region is enclosed by the curve of f, the x-axis, and the y-axis.

$$a(i) \operatorname{sold}(i) \text{for } 0 \le x < 2\pi$$
[5]

[1]

[6]

[3]

(i)
$$6 + 6\sin x = 6$$
;

- (ii) $6 + 6 \sin x = 0$.
- b. Write down the exact value of the *x*-intercept of *f* , for $0 \le x < 2\pi$.
- c. The area of the shaded region is k. Find the value of k, giving your answer in terms of π .
- d. Let $g(x) = 6 + 6 \sin\left(x \frac{\pi}{2}\right)$. The graph of f is transformed to the graph of g. [2]

Give a full geometric description of this transformation.

e. Let
$$g(x) = 6 + 6 \sin\left(x - \frac{\pi}{2}\right)$$
. The graph of f is transformed to the graph of g .
Given that $\int_p^{p+\frac{3\pi}{2}} g(x) dx = k$ and $0 \le p < 2\pi$, write down the two values of p .

Let $f(x) = x^2$ and $g(x) = 2(x - 1)^2$.

a.	The graph of g can be obtained from the graph of f using two transformations.	[2]
	Give a full geometric description of each of the two transformations.	
b.	The graph of g is translated by the vector $\begin{pmatrix} 3 \\ -2 \end{pmatrix}$ to give the graph of h.	[4]
	The point $(-1, 1)$ on the graph of f is translated to the point P on the graph of h.	

Find the coordinates of P.

- a. Show that the two zeros are 3 and -6.
- b. Find the value of q and of r.

Consider the functions f(x), g(x) and h(x). The following table gives some values associated with these functions.

x	2	3
f(x)	2	3
<i>g</i> (<i>x</i>)	-14	-18
f'(x)	1	1
g'(x)	-5	-3
h"(x)	-6	0

The following diagram shows parts of the graphs of h and h''.

There is a point of inflexion on the graph of h at P, when x = 3.

Given that h(x) = f(x) imes g(x) ,

- a. Write down the value of g(3), of f'(3), and of h''(2).
- b. Explain why P is a point of inflexion.
- c. find the *y*-coordinate of P.
- d. find the equation of the normal to the graph of h at P.

[4]

[3]

[2]

[2]

[7]

Let f(x) = 2x - 1 and $g(x) = 3x^2 + 2$.

a. Find $f^{-1}(x)$.

b. Find $(f \circ g)(1)$.

The diagram below shows the graph of a function f , for $-1 \leq x \leq 2$.

a.i. Write down the value of f(2).

a.ii.Write down the value of $f^{-1}(-1)$.

b. Sketch the graph of f^{-1} on the grid below.

[3]

[1]

[2]

[3]

Let $f(x) = \sqrt{x}$. Line *L* is the normal to the graph of *f* at the point (4, 2).

In the diagram below, the shaded region R is bounded by the x-axis, the graph of f and the line L.

a. Show that the equation of L is $y = -4x + 18$.	[4]

b.	Point A is the <i>x</i> -intercept of <i>L</i> . Find the <i>x</i> -coordinate of A.	[2]
c.	Find an expression for the area of R .	[3]
d.	The region R is rotated 360° about the x-axis. Find the volume of the solid formed, giving your answer in terms of π .	[8]

Let $f(x) = 3(x+1)^2 - 12$.

a. Show that $f(x) = 3x^2 + 6x - 9$.	[2]
(i) $\mathbf{R}(\mathbf{i})$ and given of f	
(i) write down the coordinates of the vertex;	
(ii) write down the <i>y</i> -intercept;	
(iii) find both x-intercepts.	
c. Hence sketch the graph of f .	[3]
d. Let $g(x) = x^2$. The graph of f may be obtained from the graph of g by the following two transformations	[3]
a stretch of scale factor t in the y-direction,	
followed by a translation of $\begin{pmatrix} p \\ q \end{pmatrix}$.	

Write down $\begin{pmatrix} p \\ q \end{pmatrix}$ and the value of t.

Let f(x) = 7 - 2x and g(x) = x + 3.

- a. Find $(g \circ f)(x)$.
- b. Write down $g^{-1}(x)$.
- c. Find $(f \circ g^{-1})(5)$.

The following diagram shows the graph of y = f(x), for $-4 \le x \le 5$.

[2]

[1]

[2]

a(i). Write down the value of $f(-3)$.	[1]
a(ii)Write down the value of $f^{-1}(1)$.	[1]
D. Find the domain of f^{-1} .	[2]
c. On the grid above, sketch the graph of f^{-1} .	[3]

The diagram below shows part of the graph of f(x) = (x-1)(x+3) .

b.	Find	the coordinates of the vertex of the graph of f .	[4]
a.	Write	down the x -intercepts of the graph of f .	[2]
	(b)	Find the coordinates of the vertex of the graph of f .	
	(a)	Write down the x-intercepts of the graph of f .	[6]

Let $f(x) = \sqrt{x+2}$ for $x \ge 2$ and g(x) = 3x - 7 for $x \in \mathbb{R}$.

a. Write down <i>f</i> (14).	[1]
b. Find $(g\circ f)$ (14).	[2]
c. Find $g^{-1}(x)$.	[3]

Let f(x)=8x+3 and g(x)=4x, for $x\in\mathbb{R}.$

a. Write down $g(2)$. [1]
b. Find $(f\circ g)(x).$	[2]
c. Find $f^{-1}(x)$.	[2]

Let f(x) = 4x - 2 and $g(x) = -2x^2 + 8$.

a. Find $f^{-1}(x)$.

b. Find $(f \circ g)(1)$.

Let $f(x) = 3x^2 - 6x + p$. The equation f(x) = 0 has two equal roots.

a(i).Write down the value of the discriminant.	[2]
a(ii)Hence, show that $p = 3$.	[1]
b. The graph of <i>f</i> has its vertex on the <i>x</i> -axis.	[4]
Find the coordinates of the vertex of the graph of f .	
c. The graph of f has its vertex on the x-axis.	[1]
Write down the solution of $f(x) = 0$.	
d(i). The graph of f has its vertex on the x -axis.	[1]
The function can be written in the form $f(x) = a(x - h)^2 + k$. Write down the value of a.	
d(ii)The graph of f has its vertex on the x-axis.	[1]
The function can be written in the form $f(x) = a(x - h)^2 + k$. Write down the value of h.	
d(iii) The graph of f has its vertex on the x-axis.	[1]
The function can be written in the form $f(x) = a(x - h)^2 + k$. Write down the value of k.	
e. The graph of f has its vertex on the x-axis.	[4]
The graph of a function g is obtained from the graph of f by a reflection of f in the x-axis, followed by a translation by the vector $\begin{pmatrix} 0 \\ 6 \end{pmatrix}$.	
Find g, giving your answer in the form $g(x) = Ax^2 + Bx + C$.	

Consider a function f. The line L_1 with equation y = 3x + 1 is a tangent to the graph of f when x = 2

Let $g\left(x
ight)=f\left(x^{2}+1
ight)$ and P be the point on the graph of g where x=1.

a.i. Write down $f'(2)$.	[2]
a.ii.Find $f(2)$.	[2]
b. Show that the graph of <i>g</i> has a gradient of 6 at P.	[5]
c. Let L_2 be the tangent to the graph of g at P. L_1 intersects L_2 at the point Q.	[7]

Find the y-coordinate of Q.

[3]

]

Let $f(t) = a \cos b(t-c) + d$, $t \ge 0$. Part of the graph of y = f(t) is given below.

When t = 3, there is a maximum value of 29, at M. When t = 9, there is a minimum value of 15.

a(i),(i),(i) indicative value of a.

- (ii) Show that $b = \frac{\pi}{6}$.
- (iii) Find the value of d.
- (iv) Write down a value for *c*.

b.	The transformation <i>P</i> is given by a horizontal stretch of a scale factor of $\frac{1}{2}$, followed by a translation of $\begin{pmatrix} 3 \\ -10 \end{pmatrix}$.	[2]
	Let M' be the image of M under P. Find the coordinates of M' .	
c.	The graph of g is the image of the graph of f under P .	[4]
	Find $g(t)$ in the form $g(t) = 7 \cos B(t-c) + D$.	
d.	The graph of g is the image of the graph of f under P .	[3]

Give a full geometric description of the transformation that maps the graph of g to the graph of f.

Let $f(x) = a(x - h)^2 + k$. The vertex of the graph of f is at (2, 3) and the graph passes through (1, 7).

b. Find the value of *a*.

[3]

[2]

[7]

The diagram below shows the graph of a function f(x) , for $-2 \leq x \leq 3$.

a. Sketch the graph of f(-x) on the grid below.

b. The graph of f is transformed to obtain the graph of g. The graph of g is shown below.

The function g can be written in the form g(x) = af(x+b). Write down the value of a and of b.

Let $f(x) = x^2 + 4$ and g(x) = x - 1.

a. Find $(f \circ g)(x)$.

b. The vector
$$\begin{pmatrix} 3 \\ -1 \end{pmatrix}$$
 translates the graph of $(f \circ g)$ to the graph of h . [3]
Find the coordinates of the vertex of the graph of h .
c. The vector $\begin{pmatrix} 3 \\ -1 \end{pmatrix}$ translates the graph of $(f \circ g)$ to the graph of h . [2]
Show that $h(x) = x^2 - 8x + 19$.
d. The vector $\begin{pmatrix} 3 \\ -1 \end{pmatrix}$ translates the graph of $(f \circ g)$ to the graph of h . [5]

[2]

The line y = 2x - 6 is a tangent to the graph of h at the point P. Find the x-coordinate of P.

Let $f(x) = m - \frac{1}{x}$, for $x \neq 0$. The line y = x - m intersects the graph of f in two distinct points. Find the possible values of m.

Let $f(x) = 2x^3 + 3$ and $g(x) = e^{3x} - 2$.

- a. (i) Find g(0).
 - (ii) Find $(f \circ g)(0)$.
- b. Find $f^{-1}(x)$.

Let $f(x) = x^2$. The following diagram shows part of the graph of f.

The line L is the tangent to the graph of f at the point A(-k, k^2), and intersects the x-axis at point B. The point C is (-k, 0).

The region R is enclosed by L, the graph of f, and the x-axis. This is shown in the following diagram.

diagram not to scale

diagram not to scale

a.i. Write down $f'(x)$.	[1]
a.ii.Find the gradient of L .	[2]
b. Show that the <i>x</i> -coordinate of B is $-\frac{k}{2}$.	[5]
c. Find the area of triangle ABC, giving your answer in terms of k .	[2]
d. Given that the area of triangle ABC is p times the area of R , find the value of p .	[7]

The following diagram shows the graph of a quadratic function f , for $0 \leq x \leq 4$.

[3]

The graph passes through the point P(0, 13), and its vertex is the point V(2, 1).

a(i) The final constant of the form $f(x) = a(x-h)^2 + k$.

- (i) Write down the value of h and of k.
- (ii) Show that a = 3.
- b. Find f(x), giving your answer in the form $Ax^2 + Bx + C$.
- c. Calculate the area enclosed by the graph of f, the x-axis, and the lines x = 2 and x = 4. [8]

The following diagram shows part of the graph of a quadratic function f.

The x-intercepts are at (-4, 0) and (6, 0), and the y-intercept is at (0, 240).

a. Write down f(x) in the form f(x) = -10(x - p)(x - q).

[4]

[3]

- b. Find another expression for f(x) in the form $f(x) = -10(x h)^2 + k$. [4]
- c. Show that f(x) can also be written in the form $f(x) = 240 + 20x 10x^2$. [2]

d(i) Any shift cle moves along a straight line so that its velocity, $v \text{ ms}^{-1}$, at time t seconds is given by $v = 240 + 20t - 10t^2$, for $0 \le t \le 6$. [7]

[2]

[4]

- (i) Find the value of t when the speed of the particle is greatest.
- (ii) Find the acceleration of the particle when its speed is zero.

Let $f(x) = x^2 - 4x + 5$.

The function can also be expressed in the form $f(x) = (x - h)^2 + k$.

- a. Find the equation of the axis of symmetry of the graph of f.
- b. (i) Write down the value of h.
 - (ii) Find the value of k.

Let $f(x) = \cos 2x$ and $g(x) = 2x^2 - 1$.

a. Find $f\left(\frac{\pi}{2}\right)$.	[2]
b. Find $(g \circ f)\left(rac{\pi}{2} ight)$.	[2]
c. Given that $(g \circ f)(x)$ can be written as $\cos(kx)$, find the value of $k, k \in \mathbb{Z}$.	[3]

Let $f(x) = \ln(x+5) + \ln 2$, for x > -5.

a. Find $f^{-1}(x)$.	[4]
b. Let $g(x) = \mathrm{e}^x$.	[3]

Find $(g \circ f)(x)$, giving your answer in the form ax + b, where $a, b \in \mathbb{Z}$.

- a. Given that $f^{-1}(1) = 8$, find the value of k .
- b. Find $f^{-1}\left(\frac{2}{3}\right)$.

Let $f(x) = \frac{(\ln x)^2}{2}$, for x > 0.

Let $g(x) = \frac{1}{x}$. The following diagram shows parts of the graphs of f' and g.

The graph of f' has an x-intercept at x = p.

a.	Show that $f'(x) = \frac{\ln x}{x}$.	[2]
b.	There is a minimum on the graph of f . Find the x -coordinate of this minimum.	[3]
c.	Write down the value of <i>p</i> .	[2]
d.	The graph of g intersects the graph of f' when $x = q$.	[3]
	Find the value of q.	
e.	The graph of g intersects the graph of f' when $x = q$.	[5]
	Let R be the region enclosed by the graph of f' , the graph of g and the line $x = p$.	

Show that the area of R is $\frac{1}{2}$.

Let $f(x)=1+\mathrm{e}^{-x}$ and g(x)=2x+b, for $x\in\mathbb{R},$ where b is a constant.

- a. Find $(g \circ f)(x)$.
- b. Given that $\lim_{x
 ightarrow+\infty}(g\circ f)(x)=-3$, find the value of b.

[4]

[2]

[4]

Let $f(x) = log_3 \sqrt{x}$, for x > 0 .

- a. Show that $f^{-1}(x) = 3^{2x}$.[2]b. Write down the range of f^{-1} .[1]
- c. Let $g(x) = \log_3 x$, for x > 0 .

Find the value of $(f^{-1} \circ g)(2)$, giving your answer as an integer.

Let
$$f(x)=3\sin\Bigl(rac{\pi}{2}x\Bigr)$$
, for $0\leqslant x\leqslant 4.$

- a. (i) Write down the amplitude of f.
 - (ii) Find the period of f.
- b. On the following grid sketch the graph of f.

Let f be the function given by $f(x)={
m e}^{0.5x}$, $0\le x\le 3.5$. The diagram shows the graph of f .

[3]

[4]

[3]

[1]

[3]

[2]

[3]

- a. On the same diagram, sketch the graph of f^{-1} .
- b. Write down the range of f^{-1} .
- c. Find $f^{-1}(x)$.

Let f(x)=5x and $g(x)=x^2+1,$ for $x\in\mathbb{R}.$

a. Find $f^{-1}(x)$.

b. Find $(f \circ g)(7)$.

The following diagram shows the graph of a function f, with domain $-2\leqslant x\leqslant 4.$

The points (-2, 0) and (4, 7) lie on the graph of f.

a. Write down the range of f .	[1]
b.i.Write down $f(2)$;	[1]
b.ii.Write down $f^{-1}(2).$	[1]
c. On the grid, sketch the graph of $f^{-1}.$	[3]

Let $f(x)=rac{1}{2}x^2+kx+8$, where $k\in\mathbb{Z}$.

a.	Find the values of k such that $f(x) = 0$ has two equal roots.	[4]
b.	Each value of k is equally likely for $-5 \le k \le 5$. Find the probability that $f(x) = 0$ has no roots.	[4]

Let $h(x) =$	$\frac{5}{x+2}$, for x	≥ 0 . The	graph of <i>h</i>	has a horizontal	asymptote at $y = 0$.
--------------	---------------------------	----------------	-------------------	------------------	------------------------

a. Find $f^{-1}(x)$.	[2]
b. Show that $\left(g \circ f^{-1}\right)(x) = \frac{5}{x+2}$.	[2]
c(i). Find the y-intercept of the graph of h .	[2]
c(ii)Hence, sketch the graph of h .	[3]
d(i)For the graph of h^{-1} , write down the x-intercept;	[1]
d(ii)For the graph of h^{-1} , write down the equation of the vertical asymptote.	[1]
e. Given that $h^{-1}(a) = 3$, find the value of a .	[3]

Let $f(x)=p+rac{9}{x-q},$ for x
eq q. The line x=3 is a vertical asymptote to the graph of f.

a.	Write down the value of q .	[1]
b.	The graph of f has a y -intercept at $(0, 4)$.	[4]
	Find the value of <i>p</i> .	
c.	The graph of f has a y -intercept at $(0, 4)$.	[1]
	Write down the equation of the horizontal asymptote of the graph of f .	

Let $f(x) = px^3 + px^2 + qx$.

a. Find f'(x). [2] b. Given that $f'(x) \ge 0$, show that $p^2 \le 3pq$. [5]

Let $f(x) = 8x - 2x^2$. Part of the graph of f is shown below.

a. Find the *x*-intercepts of the graph.

b(i) (a) d (i) Write down the equation of the axis of symmetry.

(ii) Find the *y*-coordinate of the vertex.

The velocity $v \text{ ms}^{-1}$ of a particle at time *t* seconds, is given by $v = 2t + \cos 2t$, for $0 \le t \le 2$.

a. Write down the velocity of the particle when $t = 0$.	[1]	
(i) Whet(ii) $t = k$, the acceleration is zero.		
(i) Show that $k = \frac{\pi}{4}$.		
(ii) Find the exact velocity when $t = \frac{\pi}{4}$.		
c. When $t < rac{\pi}{4}$, $rac{\mathrm{d} v}{\mathrm{d} t} > 0$ and when $t > rac{\pi}{4}$, $rac{\mathrm{d} v}{\mathrm{d} t} > 0$.	[4]	
Sketch a graph of v against t.		
d(i) bet d(i) be the distance travelled by the particle for $0 \le t \le 1$.	[3]	
(i) Write down an expression for d .		

(ii) Represent *d* on your sketch.

Let
$$f(x) = px^2 + (10 - p)x + \frac{5}{4}p - 5$$
.

- a. Show that the discriminant of f(x) is $100-4p^2.$
- b. Find the values of p so that f(x) = 0 has two **equal** roots.

[3]

[3]

[4]

[3]

Let f be a quadratic function. Part of the graph of f is shown below.

The vertex is at P(4, 2) and the *y*-intercept is at Q(0, 6).

a. Write down the equation of the axis of symmetry.

b. The function f can be written in the form $f(x) = a(x-h)^2 + k$. [2]

Write down the value of h and of k.

c. The function f can be written in the form $f(x) = a(x-h)^2 + k$. Find a .

The following diagram shows part of the graph of f , where $f(x) = x^2 - x - 2$.

- a. Find both *x*-intercepts.
- b. Find the *x*-coordinate of the vertex.

[1]

[3]

Consider $f(x) = \ln(x^4 + 1)$.

Sketch the graph of f , for $x \ge 0$.

The second derivative is given by $f''(x) = \frac{4x^2(3-x^4)}{(x^4+1)^2}$. The equation f''(x) = 0 has only three solutions, when x = 0, $\pm \sqrt[4]{3}$ ($\pm 1.316...$).

a. Find the value of f(0).[2]b. Find the set of values of x for which f is increasing.[5]c. (i) Find f''(1).[5](ii) Hence, show that there is no point of inflexion on the graph of f at x = 0.[5]d. There is a point of inflexion on the graph of f at $x = \sqrt[4]{3}$ (x = 1.316...).[3]

Let $f(x)=rac{x}{-2x^2+5x-2}$ for $-2\leq x\leq 4$, $x
eq rac{1}{2}$, x
eq 2 . The graph of f is given below.

The graph of f has a local minimum at A(1, 1) and a local maximum at B.

a. Use the quotient rule to show that
$$f'(x) = \frac{2x^2 - 2}{\left(-2x^2 + 5x - 2\right)^2}$$
. [6]

b. Hence find the coordinates of B.

- a. Given that $2^m = 8$ and $2^n = 16$, write down the value of m and of n.
- b. Hence or otherwise solve $8^{2x+1} = 16^{2x-3}$.

Let f(x) = p(x - q)(x - r). Part of the graph of f is shown below.

The graph passes through the points (-2, 0), (0, -4) and (4, 0).

a.	Write down the value of q and of r .	[2]
b.	Write down the equation of the axis of symmetry.	[1]
c.	Find the value of <i>p</i> .	[3]

Let $f(x)=6x\sqrt{1-x^2}$, for $-1\leqslant x\leqslant 1$, and $g(x)=\cos(x)$, for $0\leqslant x\leqslant \pi.$

Let
$$h(x) = (f \circ g)(x)$$

a. Write h(x) in the form $a\sin(bx)$, where $a,\ b\in\mathbb{Z}.$ [5]

b. Hence find the range of h.

[2]

[4]

[2]

A quadratic function f can be written in the form f(x) = a(x - p)(x - 3). The graph of f has axis of symmetry x = 2.5 and y-intercept at

$$(0, -6)$$

a. Find the value of p.[3]b. Find the value of a.[3]c. The line y = kx - 5 is a tangent to the curve of f. Find the values of k.[8]

The following diagram shows part of the graph of a quadratic function f.

[2]

[2]

[2]

The vertex is at (3, -1) and the *x*-intercepts at 2 and 4.

The function f can be written in the form $f(x) = (x-h)^2 + k.$

The function can also be written in the form f(x) = (x - a)(x - b).

- a. Write down the value of h and of k.
- b. Write down the value of a and of b.
- c. Find the y-intercept.

Let $f(x)=rac{ax}{x^2+1}$, $-8\leq x\leq 8$, $a\in \mathbb{R}$.The graph of f is shown below.

The region between x = 3 and x = 7 is shaded.

a. Show that f(-x) = -f(x).
b. Given that f''(x) = ^{2ax(x²-3)}/_{(x²+1)³}, find the coordinates of all points of inflexion.

[7]

c. It is given that
$$\int f(x) dx = \frac{a}{2} \ln(x^2 + 1) + C$$

- (i) Find the area of the shaded region, giving your answer in the form $p \ln q$.
- (ii) Find the value of $\int_4^8 2f(x-1) dx$.

Let $f(x)=3+rac{20}{x^2-4}$, for $x
eq\pm 2$. The graph of f is given below.

- a. (i) Find the coordinates of A.
 - (ii) Show that f'(x) = 0 at A.
- b. The second derivative $f''(x)=rac{40(3x^2+4)}{\left(x^2-4
 ight)^3}$. Use this to
 - (i) justify that the graph of f has a local maximum at A;
 - (ii) explain why the graph of f does **not** have a point of inflexion.
- c. Describe the behaviour of the graph of f for large |x|.
- d. Write down the range of f.

Solve $\log_2 x + \log_2 (x-2) = 3$, for x>2 .

The diagram below shows the graph of a function f(x) , for $-2 \leq x \leq 4$.

a. Let h(x) = f(-x). Sketch the graph of h on the grid below.

[6]

[1]

[2]

[3]

b. Let $g(x) = \frac{1}{2}f(x-1)$. The point A(3, 2) on the graph of f is transformed to the point P on the graph of g. Find the coordinates of P. [3]

Let $f(x) = 3(x+1)^2 - 12$.

a.	Show	w that $f(x)=3x^2+6x-9$.	[2]	
b((i) F(i); (iii) analy(h) of f			
	(i)	write down the coordinates of the vertex;		
	(ii)	write down the equation of the axis of symmetry;		
	(iii)	write down the y-intercept;		
	(iv)	find both <i>x</i> -intercepts.		
c.	:. Hence sketch the graph of f .			
d.	Let g	$g(x) = x^2$. The graph of f may be obtained from the graph of g by the two transformations:	[3]	
		a stretch of scale factor t in the y-direction		
		followed by a translation of $\begin{pmatrix} p \\ q \end{pmatrix}$.		
	Find	$\begin{pmatrix} p \\ q \end{pmatrix}$ and the value of <i>t</i> .		

Let $f(x) = x^2 + x - 6$.

- a. Write down the y-intercept of the graph of f.
- b. Solve f(x) = 0.
- c. On the following grid, sketch the graph of f, for $-4 \leq x \leq 3$.

Let $f(x)=x^2-x$, for $x\in\mathbb{R}.$ The following diagram shows part of the graph of f.

[1]

[3]

[3]

diagram not to scale

The graph of f crosses the x-axis at the origin and at the point P(1, 0).

The line L is the normal to the graph of f at P.

The line L intersects the graph of f at another point Q, as shown in the following diagram.

diagram not to scale

[3]

[3]

[4]

[6]

a.	Show	that	f'($\left[1\right]$) = 1.
----	------	------	-----	------------------	--------

b. Find the equation of L in the form y = ax + b.

- c. Find the x-coordinate of Q.
- d. Find the area of the region enclosed by the graph of f and the line L.

The following diagram shows the graph of a function f.

a. Find $f^{-1}(-1)$.	[2]	
b. Find $(f\circ f)(-1).$	[3]	
c. On the same diagram, sketch the graph of $y=f(-x).$		
a. Find the value of $\log_2 40 - \log_2 5$.	[3]	

[4]

[3]

[3]

b. Find the value of $8^{\log_2 5}$.

Let $f(x)=\sqrt{x-5}$, for $x\geq 5$.

a.	Find	f^{-1}	(2)	
----	------	----------	-----	--

b. Let g be a function such that g^{-1} exists	for all real numbers. Given that $g(30) = 3$, find $(f \circ g^{-1})(3)$.	[3]
--	---	-----

The equation $x^2 + (k+2)x + 2k = 0$ has two distinct real roots. Find the possible values of k.

Let $f(x) = 3 \ln x$ and $g(x) = \ln 5x^3$.

a.	Express $g(x)$ in the form $f(x) + \ln a$, where $a \in \mathbb{Z}^+$.	[4]

b. The graph of g is a transformation of the graph of f. Give a full geometric description of this transformation.

Consider a function f(x), for $-2 \le x \le 2$. The following diagram shows the graph of f.

[1]

[1]

[1]

[4]

c. On the grid above, sketch the graph of f^{-1} .

Let $f(x) = \frac{1}{2}x^3 - x^2 - 3x$. Part of the graph of f is shown below.

There is a maximum point at A and a minimum point at B(3, -9).

a. Find the coordinates of A.

b(i), Wi)i and (iii) n the coordinates of

- (i) the image of B after reflection in the *y*-axis;
- (ii) the image of B after translation by the vector $\begin{pmatrix} -2\\5 \end{pmatrix}$;
- (iii) the image of B after reflection in the x-axis followed by a horizontal stretch with scale factor $\frac{1}{2}$.

Let
$$f'(x) = rac{6-2x}{6x-x^2}$$
, for $0 < x < 6$.

The graph of f has a maximum point at P.

The y-coordinate of P is $\ln 27$.

- a. Find the *x*-coordinate of P.
- b. Find f(x), expressing your answer as a single logarithm.
- c. The graph of f is transformed by a vertical stretch with scale factor $\frac{1}{\ln 3}$. The image of P under this transformation has coordinates (a, b). [[N/A Find the value of a and of b, where $a, b \in \mathbb{N}$.

Consider $f(x) = 2kx^2 - 4kx + 1$, for $k \neq 0$. The equation f(x) = 0 has two equal roots.

[8]

[6]

[3]

[8]

- a. Find the value of k.
- b. The line y = p intersects the graph of f. Find all possible values of p.

The following diagram shows part of the graph of a quadratic function f.

The vertex is at (1, -9), and the graph crosses the *y*-axis at the point (0, c). The function can be written in the form $f(x) = (x - h)^2 + k$.

- a. Write down the value of \boldsymbol{h} and of $\boldsymbol{k}.$
- b. Find the value of c.

c. Let $g(x) = -(x-3)^2 + 1$. The graph of g is obtained by a reflection of the graph of f in the x-axis, followed by a translation of $\begin{pmatrix} p \\ a \end{pmatrix}$.

Find the value of p and of q.

d. Find the x-coordinates of the points of intersection of the graphs of f and g.

The following table shows the probability distribution of a discrete random variable A, in terms of an angle θ .

а	1	2
$\mathbb{P}(A = a)$	$\cos \theta$	$2\cos 2\theta$

a. Show that $\cos \theta = \frac{3}{4}$.

b. Given that $\tan \theta > 0$, find $\tan \theta$.

c. Let $y = \frac{1}{\cos x}$, for $0 < x < \frac{\pi}{2}$. The graph of *y* between $x = \theta$ and $x = \frac{\pi}{4}$ is rotated 360° about the *x*-axis. Find the volume of the solid formed. [6]

y (0, c) (1, -9)

[2]

[2]

[5]

[7]

[2]

[3]

[6]

Let
$$f(x) = x^2$$
 and $g(x) = 2x - 3$.

- a. Find $g^{-1}(x)$.
- b. Find $(f \circ g)(4)$.

[2]

Part of the graph of a function f is shown in the diagram below.

a. On the same diagram sketch the graph of y = -f(x) .

b(i) Let g(i)x) = f(x+3) .

- (i) Find g(-3).
- (ii) Describe fully the transformation that maps the graph of f to the graph of g.

Consider the equation $x^2 + (k-1)x + 1 = 0$, where k is a real number.

Find the values of *k* for which the equation has two **equal** real solutions.

[2]

[4]

Let $f(x) = px^2 + qx - 4p$, where $p \neq 0$. Find Find the number of roots for the equation f(x) = 0. Justify your answer.

Let $f(x) = ax^2 - 4x - c$. A horizontal line, *L*, intersects the graph of *f* at x = -1 and x = 3.

a.i. The equation of the axis of symmetry is $x = p$. Find p .	[2]
a.ii.Hence, show that $a = 2$.	[2]
b. The equation of <i>L</i> is $y = 5$. Find the value of <i>c</i> .	[3]

Let $f(x) = e^{x+3}$.

- a. (i) Show that $f^{-1}(x) = \ln x 3$.
 - (ii) Write down the domain of f^{-1} .
- b. Solve the equation $f^{-1}(x) = \ln rac{1}{x}$.

Three consecutive terms of a geometric sequence are x - 3, 6 and x + 2.

Find the possible values of x.

The following diagram shows the graph of a function f, for $-4 \le x \le 2$.

[3]

[4]

- a. On the same axes, sketch the graph of f(-x).
- b. Another function, g, can be written in the form $g\left(x
 ight)=a imes f\left(x+b
 ight)$. The following diagram shows the graph of g.

Write down the value of *a* and of *b*.

Let
$$f(x) = \sin x + rac{1}{2}x^2 - 2x$$
 , for $0 \leq x \leq \pi$.

Let g be a quadratic function such that g(0) = 5. The line x = 2 is the axis of symmetry of the graph of g.

The function g can be expressed in the form $g(x) = a(x-h)^2 + 3$.

b.	b. Find $g(4)$.		[3]
c.	(i)	Write down the value of h .	[4]
	(ii)	Find the value of a.	
d.	Find	the value of x for which the tangent to the graph of f is parallel to the tangent to the graph of g .	[6]

Write down the value of

$a(i)(i) \log_3 27;$		[1]
$a(ii)(ii) \log_8 \frac{1}{8};$		[1]
$a(iii)(iii) \log_{16} 4.$		[1]
b. Hence, solve $\log_3 27 + \log_8 \frac{1}{8} - \log_8 \frac{1}{8}$	$s_{16}4 = \log_4 x_{.}$	[3]

Let $f(x) = 3\tan^4 x + 2k$ and $g(x) = -\tan^4 x + 8k\tan^2 x + k$, for $0 \le x \le 1$, where 0 < k < 1. The graphs of f and g intersect at exactly one point. Find the value of k.